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A very simple and efficient numerical method for evaluating the Madelung constants for cubic crystals,
using cubes of increasing size, is proposed. The results of successful applications to the NaCl and CsCl ionic
crystals, representative perovskite cubic lattices, and to a simple cubic metal are reported.
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The calculation of Madelung constants is a classical solid-
state problem and allows one to evaluate the electrostatic
energy of ionic crystal structures, such as the NaCl lattice,
which is characterized by alternate point positive and nega-
tive charges, Zi= �1, with nearest-neighbor distance d. In
this case the electrostatic potential acting on the ith ion, due
to the charges on all other sites, can be written as

Vi = − Zi�e/d , �1�

where e is the absolute value of the electronic charge and �
is the Madelung constant, which is defined as �rij = �rj−ri� is
the distance between the ions located in the lattice sites i and
j�

� = d�
j�i

�− Zj�/rij . �2�

As it is well known, the calculation of the above sum, in
three-dimensional crystals, is not trivial because the series is
only conditionally convergent due to the long-range decay of
the Coulomb potential. Nowadays, the standard method for
calculating � is represented by the method of Ewald,1 which
consists of placing neutralizing Gaussian charge distributions
on each site, making the sum in real space rapidly conver-
gent, and then separately calculating and subtracting the po-
tential from the Gaussian caps, which can be done with a
rapidly converging sum in reciprocal space. However, the
problem of lattice summation remains the subject of active
interest �see, for instance, Ref. 2, and references quoted
therein� and many other schemes for evaluating the Made-
lung constants have been proposed �a few examples are
listed in Ref. 3� although, similar to the scheme of Ewald,1

they are relatively complex.
Interestingly, Harrison4 recently provided an alternative,

very simple, and elegant method for evaluating Madelung
sums using a laptop computer. The basic idea is the follow-
ing: if the Madelung sum is directly performed by summing
the electrostatic q /r contributions for all the ions within a
sphere of radius R, even considering a huge number of ions,
the resulting potential at the central ions fluctuates in sign as
well as magnitude with increasing R, this behavior being due
to the fact that the net charge Q within the sphere also fluc-
tuates. Hence, the difficulty can be easily fixed by correcting
the potential at the center by a term −Q /R. Using such a
simple correction, the improvement is dramatic so that the
corrected result fluctuates only by 1% even for relatively
small R values �R�50d�. Since for practical applications, a

much higher precision is not physically meaningful, this
means that the evaluation of the electrostatic energy of ionic
crystals can be rapidly performed with a common laptop
computer, by writing a trivial and very short code. The
method has been successfully applied4 not only to the proto-
typical NaCl-lattice case but also to the CsCl structure, com-
plex compounds in the cubic perovskite structure and even
bcc metals. In this last case the metal is modeled as a system
of positive charges embedded in a compensating uniform
negative background and the method described above is still
applicable by lowering the potential at the center of the
sphere by the electrostatic potential at the center of a uniform
negative charge.4

We here propose another direct method, applicable to cu-
bic crystals, which has some similarities to that of Harrison4

and is characterized by an even faster convergence of the
Madelung constant, as a function of the number of charged
particles included in the sum. Basically, in our method, in-
stead of considering spheres of increasing radius R, we use
cubes of increasing size. In practice, this means that we carry
out the sum of Eq. �2� by performing three nested loops
�over the x, y, and z coordinates� and without the control
statement which selects only the contributions coming from
the ions inside the sphere of radius R. The advantage of this
simple modification is that, if one considers a cube of linear
size L=2nd, it is easy to show that, i.e., for the NaCl lattice,
the net charge included within this cube is simply given by

0 10 20 30 40
n

1.7

1.72

1.74

1.76

1.78

M
ad

el
un

g
co

ns
ta

nt

FIG. 1. Estimate of the Madelung constant � as a function of the
cubic side, for the NaCl lattice, using the present method �solid line;
the circles denote results obtained by averaging over subsequent
estimates� and the scheme of Harrison �Ref. 4� �dashed line�.
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Q�n� = − 1n, �3�

and hence it exhibits regular oscillations from −1 to +1. By
extending the above algorithm, by considering multiple, dif-
ferently centered cubic cells, one finds that a similar behav-
ior also applies to more complex ionic structures: for in-
stance, in the case of the CsCl lattice, the charge oscillates
again from −1 to +1, while in the WO3 structure described
below, one finds that the charge oscillations go from −6 to
+6. From these observations it is very natural to propose that
a good estimate of the Madelung constant, relative to a given
n value, is obtained by taking the arithmetic average with the
estimate corresponding to n−1,

�̄�n� = ���n� + ��n − 1��/2. �4�

As can be seen, looking at Fig. 1, relative to the NaCl
case, the improvement obtained by using this recipe, with
respect to the scheme of Harrison,4 is evident; in fact one
achieves a reasonably converged result �with an error of
about 1%� for n as small as 6. Moreover, an even faster
convergence can be obtained by observing that �̄�n� itself
exhibits regular oscillations; therefore, if one averages over
subsequent �̄�n� values, a 1% accuracy is already achieved
for n=3 �see Fig. 1�.

Clearly this improvement more than offsets the larger
number of terms which must be explicitly summed, for a
given n value, when a cube is used instead of a sphere:
�2L�3 / �4�L3 /3�=6 /��1.9. This behavior is also confirmed

in the other ionic crystal structures investigated in the paper
of Harrison,4 namely, the CsCl lattice, two representative
perovskite structures, and in a simple cubic metal �see Tables
I–IV�.

Clearly, the usefulness of such a method is not particu-
larly apparent in the prototypical NaCl and CsCl ionic lat-
tices, where literature reference data are available since a
long time ago, but instead in applications to more complex
compound such as the cubic perovskite structures. Following
the notation of Ref. 4, these structures can be denoted by
ABO3, where the A atoms are located in the body-center
position of the reference cube, the atoms B are at the corners,
and the O atoms are at the cube edges. Assuming that each
atom type has a well-defined charge �typically ZO=−2 and
ZA+ZB+3ZO=0, due to charge neutrality�, the basic ingredi-
ent for evaluating the electrostatic energy of the structure is
represented by the values of the electric potential on each
site, �A, �B, and �O, due to all the ions except the reference
one from that site. In fact, the electrostatic energy per for-
mula unit is then given by5

Eel = 1/2�ZAe�A + ZBe�B + 3ZOe�O� . �5�

In Tables II and III we have reported the electric poten-

TABLE I. Estimate of the Madelung constant � as a function of
the cubic side, L=2nd, for the NaCl and CsCl lattices, compared to
the reference data �Ref. 8�; in parentheses, the corresponding val-
ues, obtained using the method of Harrison �Ref. 4�, are reported.

n �NaCl �CsCl

10 1.7505 �1.6650� 1.7654 �1.7958�
20 1.7483 �1.7826� 1.7634 �1.7513�
50 1.7477 �1.7525� 1.7628 �1.7610�
100 1.7476 �1.7400� 1.7627 �1.7631�
300 1.7476 �1.7457� 1.7627 �1.7613�
Ref. 1.7476 1.7627

TABLE II. Electrostatic potential coefficients �to be multiplied
by e /d�, as a function of the cubic side, for the WO3 perovskite
lattice �ZO=−2, ZA= +6�; in parentheses, the corresponding val-
ues, obtained using the method of Harrison �Ref. 4�, are reported.

n �A �B �O

10 −0.6505 �−0.6915� −8.2164 �−8.2585� 3.7052 �3.6800�
20 −0.6561 �−0.7793� −8.2220 �−8.3453� 3.7122 �3.5933�
50 −0.6579 �−0.7048� −8.2237 �−8.2707� 3.7142 �3.6680�
100 −0.6581 �−0.6377� −8.2240 �−8.2036� 3.7146 �3.7351�
200 −0.6582 �−0.6664� −8.2241 �−8.2322� 3.7146 �3.7064�
300 −0.6582 �−0.6631� −8.2241 �−8.2290� 3.7146 �3.7097�
600 −0.6582 �−0.6570� −8.2241 �−8.2229� 3.7146 �3.7158�

TABLE III. Electrostatic potential coefficients �to be multiplied
by e /d�, as a function of the cubic side, for the AB perovskite lattice
�ZB=−1, ZA= +1�; in parentheses, the corresponding values, ob-
tained using the method of Harrison �Ref. 4�, are reported.

n �A �B �O

10 −1.0161 �−0.9986� 1.0193 �1.0368� −0.2417 �−0.2242�
20 −1.0173 �−1.0243� 1.0181 �1.0111� −0.2429 �−0.2499�
50 −1.0176 �−1.0187� 1.0177 �1.0167� −0.2432 �−0.2443�
100 −1.0177 �−1.0174� 1.0177 �1.0180� −0.2433 �−0.2430�
200 −1.0177 �−1.0169� 1.0177 �1.0185� −0.2433 �−0.2425�
300 −1.0177 �−1.0185� 1.0177 �1.0169� −0.2433 �−0.2441�
600 −1.0177 �−1.0178� 1.0177 �1.0176� −0.2433 �−0.2434�

TABLE IV. Electrostatic potential Vsc �to be multiplied by e /r0,
where r0 is the atomic sphere radius� as a function of the cubic side,
for a simple cubic metal, compared to the reference value �Ref. 7�;
in parentheses, the corresponding values, obtained using the method
of Harrison �Ref. 4�, are reported.

n Vsc

10 −1.76015 �−1.78126�
20 −1.76013 �−1.76025�
50 −1.76012 �−1.75807�

100 −1.76012 �−1.76116�
200 −1.76012 �−1.75982�
300 −1.76012 �−1.75980�
600 −1.76012 �−1.75998�
800 −1.76012 �−1.76018�
Ref. −1.76012
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tials for the case of WO3 �although �A can be calculated,
there is no atom in the A site� and of AB �this compound,
where the O site is empty, corresponds to a CsCl structure,
differing from the standard one because of a different
nearest-neighbor distance4�, respectively. Combining these
results, the Madelung potentials for other perovskites can be
easily obtained, as described by Harrison;4 moreover, effec-
tive, fractional charges could be adopted for more realistic
descriptions.4

In the case of the simple cubic metal the average over
subsequent n estimates is not very helpful since the charge
does not fluctuate in sign, and the electrostatic potential Vsc
must be lowered not by the potential at the center of a uni-
form, negatively charged sphere, Vsphere=3 /2Q /R� �R� is
very close to R but does not coincide with it since it is

defined in such a way that the charge density of Q in the
sphere of radius R� is exactly the bulk value�, as in the ap-
proach of Harrison,4 but instead by the potential at the center
of a uniform, negatively charged cube, which is given by6

Vcube = Q/L��3 ln�31/2 + 2� − �/2� � 2.38Q/L�. �6�

With our scheme, similar to what is done in the Harrison
procedure, the length L� is defined in such a way that the
charge density of Q in the cube of side L� coincides with the
bulk value. Moreover, in order to obtain the correct electro-
static potential, using cubes instead of spheres, a constant
correction term �−�e / �12d�� must be added, as shown in
detail by Nijboer and Ruijgrok.9 As can be seen in Table IV,
even in this last case the improvement is dramatic; in fact a
good convergence is obtained using n as small as 5.
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